资源类型

期刊论文 1

年份

2022 1

关键词

检索范围:

排序: 展示方式:

Conversion of CO into CO by high active and stable PdNi nanoparticles supported on a metal-organic framework

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1139-1148 doi: 10.1007/s11705-021-2111-5

摘要: The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd+ Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution of PdNi nanoparticles, and lower dissociation and desorption barriers. Comparison of the catalysts synthesized by MIL-101(Cr) and MIL-101-NH2(Cr) as the supports of metals showed that Pd/MIL-101-NH2(Cr) outperforms Pd/MIL-101-(Cr) because of the higher electron density of Pd resulting from the electron donor ability of the NH2 functional group. However, the same activities were observed for Pd70Ni30/MIL-101(Cr) and Pd70Ni30/MIL-101-NH2(Cr), which is due to a less uniform distribution of Pd nanoparticles in Pd70Ni30/MIL-101-NH2(Cr) originated from amorphization of MIL-101-NH2(Cr) structure during the reduction process. In contrast, Pd70Ni30/MIL-101(Cr) revealed the stable structure and activity during reduction and CO oxidation for a long time.

关键词: CO oxidation     heterogeneous catalysis     metal-organic framework     NH2 functional group     PdNi    

标题 作者 时间 类型 操作

Conversion of CO into CO by high active and stable PdNi nanoparticles supported on a metal-organic framework

期刊论文